50 градусов какой угол

Измерение углов

Когда прямые пересекаются, то получается четыре разные области по отношению к точке пересечения.
Эти новые области называют углами.


На картинке видны 4 разных угла, образованных пересечением прямых AB и CD

Обычно углы измеряются в градусах, что обозначается как °. Когда объект совершает полный круг, то есть движется из точки D через B, C, A, а затем обратно к D, то говорят что он повернулся на 360 градусов (360°). Таким образом, градус – это $frac$ круга.
1/360 круга

Три способа как найти угол 90 градусов с помощью рулетки без погрешности

Сегодня на строительном рынке измерительные инструменты представлены в широком ассортименте от линейки до лазерных установок. Рассмотрим способы, как найти угол 90 градусов с помощью рулетки без дополнительных приспособлений кроме калькулятора и карандаша. Ознакомимся с тремя способами, которые позволяют решить задачу без допущения погрешностей. Читайте до конца и Вы узнаете, как можно по тем же методикам выстроить угол в 45 или 30 градусов.

Углы 30, 45, 60, 90 градусов: наглядные, стихотворные, боевые, электрические, драматические, музыкальные

Углы 30 45 60 90 градусов

Можно определить углы 30, 45, 60, 90 градусов с помощью своей ладони.

Что такое угол? Виды углов

Угол — это простая геометрическая фигура. Определение угла напрямую связано с понятием луча.

Луч — прямая линия, у которой есть начало, но нет конца, и продолжается она только в одну сторону.

Если нам дана прямая a на плоскости, и на ней есть некоторая точку O — выходит, что прямая разделена точкой на две части, каждая из которых является лучом с началом в точке O.

точка разделяет прямую

Луч можно обозначить одной строчной буквой латинского алфавита или двумя прописными. Например, вот так:

обозначение лучей

Угол — часть плоскости между двумя линиями, исходящими из одной точки. Каждая сторона угла является лучом, а вершина — общим началом сторон.

угол

В математике существует специальный символ для обозначения угла, вот он: .

Если стороны угла названы малыми латинскими буквами, то их записывают после символа. Например, так: ∠ab или ∠ba.

Если стороны угла названы большими буквами, то обозначение угла будет состоять из символа и трех букв, при этом вершина всегда записывается в центре. При сторонах угла OA и OB название угла запишем так: ∠AOB и ∠BOA.

Иногда можно встретить обозначение в виде цифр — так тоже можно.

Для наглядности — все способы обозначения углов:

обозначения угла

Что такое вершина и стороны угла:

  • Стороны угла — лучи, из которых состоит угол.
  • Вершина угла — общее начало сторон угла.

Биссектриса — это луч, который исходит из вершины угла и делит его на два равных угла.

Так как угол делит плоскость на две части, одна будет внутренней областью угла, а другая — внешней областью угла. Вот так:

области угла

При разделении развернутым углом на плоскости любая из его частей считается внутренней областью развернутого угла.

Единица измерения углов — градусы. Символ для обозначения градуса угла: °.

Подробнее об углах

Picture

Плоский угол — геометрическая фигура образованная двумя пересекающимися линиями. Плоский угол состоит из двух лучей с общим началом, и эта точка называется вершиной луча. Лучи называются сторонами угла. У углов много интересных свойств, например, сумма всех углов в параллелограмме — 360°, а в треугольнике — 180°.

Виды углов

Прямые углы равны 90°, острые — меньше 90°, а тупые — наоборот, больше 90°. Углы, равные 180° называются развернутыми, углы в 360° называются полными, а углы больше развернутых но меньше полных называются невыпуклыми. Когда сумма двух углов равна 90°, то есть один угол дополняет другой до 90°, они называются дополнительными. Если они дополняют друг друга до 180°, они называются смежными, а если же до 360° — то сопряженными. В многоугольниках углы внутри многоугольника называются внутренними, а сопряженные с ними — внешними.

Когда сумма двух углов равна 90°, то есть один угол дополняет другой до 90°, они называются дополнительными. Если они дополняют друг друга до 180°, они называются смежными, а если же до 360° — то сопряженными. В многоугольниках углы внутри многоугольника называются внутренними, а сопряженные с ними — внешними.

Два угла, образованные при пересечении двух прямых и не являющихся смежными, называются вертикальными. Они равны.

Углы больше 360 градусов

Мы говорили о том, что когда объект делает полный круг вокруг точки, то он проходит 360°, однако, когда объект делает более одного круга, то он делает угол более 360 градусов. Это обычное явление в повседневной жизни. Колесо проходит многие круги, когда автомобиль движется, то есть оно образует угол больше 360°.

Для того, чтобы узнать количество циклов (пройденных кругов) при вращении объекта, мы считаем количество раз, которое нужно прибавить 360 к самому себе, чтобы получить число равное или меньшее, чем данный угол. Точно так же мы находим число, которое мы умножаем на 360, чтобы получить число меньшее, но наиболее близкое к данному углу.

Пример 2
1. Найти количество кругов, описанных объектом, образующем угол
a) 380°
b) 770°
c) 1000°
Решение
a) 380 = (1 × 360) + 20
Объект описал один круг и 20°
Так как $20^ = frac = frac$ круга
Объект описал $1frac$ кругов.

b) 2 × 360 = 720
770 = (2 × 360) + 50
Объект описал два круга и 50°
$50^ = frac = frac$ круга
Объект описал $2frac$ круга
c)2 × 360 = 720
1000 = (2 × 360) + 280
$280^ = frac = frac$ кругов
Объект описал $2frac$ кругов

Прямой угол в интерьере

В большинстве своем помещения представлены 4 стенами, полом и потолком. Здесь практически все смежные углы должны быть равны 90 градусам, если важна строгая геометрия. Однако, как правило, выводятся они только в двух случаях: под мебель и ванну. Если это момент упустить, то визуально искривления будут бросаться в глаза.

Определение смежных и вертикальных углов

Смежные углы — это пара углов, у которых одна сторона общая, а две другие стороны лежат на одной прямой. Таким образом два смежных угла составляют развернутый угол. Общая сторона двух смежных углов называется наклонной к прямой, на которой лежат другие стороны, при условии, что смежные углы не равны.

смежные углы

Вертикальные углы — это пара углов, у которых есть общая вершина, при этом стороны одного угла составляют продолжение сторон другого угла.

вертикальные углы

При пересечении прямых получается четыре пары смежных и две пары вертикальных углов. Вот как это выглядит:

Градусы наглядные: как их определить с помощью своей ладони

Углы 30 45 60 90 градусов

Рис. 1. Углы 0, 30, 45, 60 и 90 градусов.

Наша рука, оказывается, очень даже может помочь с величинами углов, с градусами. Если посмотреть на нее под определенным углом зрения (см. рис. 1), то вот они, родимые: 0 градусов, 30, 45, 60 и даже 90 градусов!

Почему нам так важны именно эти величины? Почему нас могут интересовать углы 0, 30, 60 и 90 градусов, а также 45? Нет бы поинтересоваться, скажем, углами 15, 20, 75 или 80 градусов…

Оказывается, все дело в синусах и косинусах! Ибо синус нуля градусов есть ноль, а косинус 90 градусов — тоже равен нулю. Синус 30 градусов равен половинке единицы. Такое же значение 0,5 дает косинус 60 градусов.

А вот 45 градусов интересны тем, что синус и косинус 45 градусов равны между собой. Это значит, что тангенс 45 градусов будет равен единице. Ведь мы помним, что тангенс угла есть частное от деления синуса угла на косинус угла.

Но не только об этом хотелось сказать, глядя на рисунок…

Положительные и отрицательные углы

Когда объект вращается по часовой стрелки, то он образует отрицательный угол вращения, а когда вращается против часовой стрелке – положительный угол. До этого момента мы рассматривали только положительные углы.

В форме диаграммы отрицательный угол может быть изображен так, как это показано ниже.

Рисунок ниже показывает знак угла, который измеряется от общей прямой, 0 оси (оси абсцисс – х оси)
Положительные и отрицательные углы

Это означает, что при наличии отрицательного угла, мы можем получить соответствующий ему положительный угол.
Например, нижняя часть вертикальной прямой это 270°. Когда измеряется в негативную сторону, то получим -90°. Мы просто вычитаем 270 из 360. Имея отрицательный угол, мы прибавляем 360, для того чтобы получить соотвествующий положительный угол.
Когда угол равен -360°, это означает, что объект совершил более одного круга по часовой стрелке.

Пример 3
1. Найти соответствующий положительный угол
a) -35°
b) -60°
c) -180°
d) – 670°

2. Найти соответствующий отрицательный угол 80°, 167°, 330°и 1300°.
Решение
1. Для того, чтобы найти соответствующий положительный угол мы прибавляем 360 к значению угла.
a) -35°= 360 + (-35) = 360 – 35 = 325°
b) -60°= 360 + (-60) = 360 – 60 = 300°
c) -180°= 360 + (-180) = 360 – 180 = 180°
d) -670°= 360 + (-670) = -310
Это означает один круг по часовой стрелке (360)
360 + (-310) = 50°
Угол равен 360 + 50 = 410°

2. Для того, чтобы получить соответсвующий отрицательный угол мы вычитаем 360 от значения угла.
80° = 80 – 360 = – 280°
167° = 167 – 360 = -193°
330° = 330 – 360 = -30°
1300° = 1300 – 360 = 940 (пройден один круг)
940 – 360 = 580 (пройден второй круг)
580 – 360 = 220 (пройден третий круг)
220 – 360 = -140°
Угол равен -360 – 360 – 360 – 140 = -1220°
Таким образом 1300° = -1220°

Способы определения разворота

Раньше распространенным решением как вывести угол 90 градусов, например, на фундаменте был обычный строительный уголок. Главное, чтобы он был проверен и соответствовал 90 градусам. Сегодня профессионалы для упрощения процесса и ускорения монтажных работ пользуются лазерными уровнями. Третий вариант – применение обычной измерительной рулетки.

Теорема Пифагора

С этой доказанной теоремой знаком каждый, кто учился в школе. Она применима только к треугольникам, в котором один из углов обязательно прямой. Прилегающие к нему стороны – катеты a и b, соединительный отрезок – гипотенуза (с). Формула выглядит так: a²+b²=c².

Удобство использования такого способа как найти прямой угол при строительстве в том, что наносить разметку можно в любом по площади помещении. Здесь даже допустимо наличие посторонних предметов. Главное, чтобы был доступ к углу и стенам, можно было свободно протянуть соединительную гипотенузу. Дополнительно понадобится только калькулятор, чтобы быстро произвести нужные вычисления.

Египетский треугольник

Золотой или Египетский треугольник – это фигура с прямым углом, у которой стороны равны 3, 4 и 5 частям. Удобство здесь заключается в том, что не нужно возводить параметры в квадратную степень и извлекать корни. Достаточно принять за часть ту или иную условную единицу. Это может быть как 1 см, так и 10 метров, что особенно удобно для решения как вывести угол 90 градусов на стенах из штукатурки.

Если имеются сомнения в справедливости утверждения про угол в 90 градусов, то можно его проверить с помощью теоремы Пифагора: 3*3+4*4= 5*5 или 9+16=25. Остается только начать применять эту методику на практике.

Равнобедренный треугольник

Здесь рассматривается для удобства формирования угла 90 градусов с помощью рулетки фигура с двумя сторонами, которые равны 100 см. Если между ними прямой разворот, то длина основы составит 141,4 см. Актуален такой подход в строительстве потому, что при увеличении метровых ориентиров в 2, 3 и более раз разница между размерами соединительного отрезка будет идентичной. То есть в прямоугольном равнобедренном треугольнике справедливы такие равенства:

  • a и b равны 100*2=200 см – c=141,4*2=282,8 см;
  • a и b равны 100*5=500 см – с= 141,4*5=707 см;
  • a и b равны 100*2,2= 220 см – с=141,4*2,2=311,08 см.

Если проверить эти утверждения, то гипотенуза или основа равнобедренного треугольника с верхним прямым углом будет при округлении действительно равна 141,4 (141,421356…). С одной стороны – это простой и верный способ как проверить угол 90 градусов рулеткой по нанесенной разметке. Достаточно отмерять метровые участки и сделать только одно умножение 141,4 на число метров. Один только недостаток здесь все же есть. Если в квартире или доме погрешность будет несущественной из-за малых габаритов, то на крупных объектах отклонение из-за неточной гипотенузы может стать заметным.

Градусы стихотворные и число «пи»

Есть такое число – «пи». Оно почему-то равно 3,14. Хотя не совсем так. Это число с бесконечным количеством цифр после запятой. После запятой стоят не только цифры 1 и 4, но и множество других цифр.

Первый десяток цифр числа «пи» легко написать, если запомнить необычное стихотворение. Правда, стихи про «пи» нужно писать со старинной буквой «ять» — ведь и число «пи» очень старое, и стихотворение совсем не молодое:

Кто и шутя, и скоро пожелаетъ
Пи узнать число — ужъ знаетъ

Зачем в стихотворении стоит «ять» на конце? И при чем тут «пи»? Все очень просто: считаем буквы в словах стихотворения и подставляем цифры в число «пи».

Получается, кто=3, и=1, шутя=4, и=1, скоро=5 и так далее: 3,1415926536… Многоточие на конце — это значит, что есть продолжение цифрам, бесконечное продолжение.

Причем тут градусы? При том, что «пи» — это величина развернутого угла, но не в градусах, а в радианах (другая единица измерения величины угла). «Пи» радиан есть угол величиной 180 градусов.

Как говорят математики, отсюда нетрудно догадаться, что 0 градусов есть ноль радиан. 90 градусов есть «пи пополам» радиан. Нам этот термин «пи пополам» еще пригодится далее. Все остальные градусы таким же образом можно свести к разным частям числа «пи».

Получается, что мы теперь знаем стишок про 180 градусов — стишок про «пи»! Что это дает?

Радиан

Радиан – это угол из центра круга, в который заключена дуга, длина которой равна радиусу данного круга. Это единица измерения угловой величины. Такой угол примерно равен 57,3°.
В большинстве случаев, это обозначается как рад.
Таким образом $1 рад approx 57,3^$
один радиан
Радиус = r = OA = OB = AB
Угол BOA равен одному радиану

Поскольку длина окружности задается как $2pi r$, то в окружности $2pi$ радиусов, а значит в целом круге $2pi$ радиан.

Радианы обычно выражаются через $pi$ во избежание десятичных частей в вычислениях. В большинстве книг, аббревиатура рад (rad) не встречается, но читатель должен знать, что, когда речь идет об угле, то он задан через $pi$, а единицами измерения автоматически становятся радианы.

Градусы и радианы

Пример 4
1. Преобразовать 240°, 45°, 270°, 750° и 390° в радианы через $pi$.
Решение
Умножим углы на $frac$.

2. Преобразовать следующие углы в градусы.
a) $fracpi$
b) $3,12pi$
c) 2,4 радиан
Решение
$180^ = pi$
a) $frac pi = frac imes 180 = 225^$
b) $3,12pi = 3,12 imes 180 = 561,6^$
c) 1 рад = 57,3°
$2,4 = frac = 137,52$

Отрицаетльные углы и углы больше, чем $2pi$ радиан

Для того чтобы преобразовать отрицательный угол в положительный, мы складываем его с $2pi$.
Для того чтобы преобразовать положительный угол в отрицательный, мы вычитаем из него $2pi$.

Пример 5
1. Преобразовать $-fracpi$ и $-fracpi$ в позитивные углы в радианах.

Решение
Прибавляем к углу $2pi$
$-fracpi = -fracpi + 2pi = fracpi = 1fracpi$

Когда объект вращается на угол больший, чем $2pi$;, то он делает больше одного круга.
Для того, чтобы определить количество оборотов (кругов или циклов) в таком угле, мы находим такое число, умножая которое на $2pi$, результат равен или меньше, но как можно ближе к данному числу.

Пример 6
1. Найти количество кругов пройденных объектом при данных углах
a) $-10pi$
b) $9pi$
c) $fracpi$

Решение
a) $-10pi = 5(-2pi)$;
$-2pi$ подразумевает один цикл в направлении по часовой стрелке, то это означает, что
объект сделал 5 циклов по часовой стрелке.

b) $9pi = 4(2pi) + pi$, $pi =$ пол цикла
объект сделал четыре с половиной цикла против часовой стрелки

c) $fracpi=3,5pi=2pi+1,5pi$, $1,5pi$ равно три четверти цикла $(frac=frac)$
объект прошел один и три четверти цикла против часовой стрелки

Градусы боевые: почему наши деды победили

Плывет боевой корабль. Вернее, идет боевой корабль, ибо корабли не плавают, а ходят. Штурман прокладывает курс на карте. И вдруг появляется супостат. Тревога!

Штурман откладывает карту в сторону. Достает маневренный планшет. Теперь он отслеживает на нем положение корабля относительно одного противника или сразу нескольких противников.

Тут — сплошные градусы. Кто из супостатов виден под каким углом? Угол есть решающая величина. Приходится учитывать как углы, так и их синусы, и косинусы.

Кто в школе учился, тот помнит, что синус и косинус угла не может быть больше единицы. Хоть что делай, больше единицы не получается.

А вот в годы войны у штурмана боевого корабля косинусы углов доходили порой до четырех! Потому и победили, что делали невозможное! Даже с косинусами, ограниченными правильной математикой!

Так что запомним вопреки математике: в годы войны косинусы углов могут доходить до «четырех». В том числе, поэтому наши деды победили!

Видео описание

В этом видео мастер делится опытом выведения прямых углов с помощью теоремы Пифагора и Египетского треугольника:

Градусы электрические: отклонение между напряжением и током

Ну, синус? Ну, косинус? И что тут такого? Спросим любого человека, например, возле пивного ларька, что такое синус и как давно он пользовался косинусом после школы. Что услышим в ответ?! Во, именно «это» и услышим.

Вместе с тем мы постоянно живем, можно сказать, под градусом, точнее, под косинусом! Ежедневно мы пользуемся электричеством: нажимаем кнопки и выключатели, и дело с концом — все светится, крутится, работает.

Чтобы электричество выполняло свое предназначение, нужно электрическое напряжение и электрический ток. Обе «субстанции» должны быть вместе и одновременно. Но эти две величины могут иметь между собой угол отклонения, измеряемый «косинусом фи», как выражаются энергетики на своем профессиональном языке.

Если отклонение напряжения от тока есть ноль градусов, то электрическая мощность будет получена умножением величины напряжения на величину тока.

Допустим, подключаем электрообогреватель. Он начинает излучать тепло, равное по мощности этой самой величине: напряжение 220В (двести двадцать вольт) умножить на ток, скажем, 5А (пять ампер) равно 1КВт (1 киловатт) мощности. Становится тепло!

Если между напряжением и током есть отклонение, хотя бы на 1 градус, то придется перемножать не только напряжение и ток, но и полученный результат дополнительно умножать на косинус угла отклонения. Ноль градусов отклонения — косинус равен единице, умножение на единицу ничего не меняет. А вот косинус всего лишь 1-го градуса возможного отклонения уже меньше единицы. Не намного, но меньше. Это значит, что греть наша батарея будет уже слабее.

Чем больше отклонение электрического напряжения от электрического тока, чем будет больше между ними градусов так называемого угла «фи». Тем слабее будут греть батареи, хуже станет накал лампочек, и вообще будет меньше электричества.

И не говорите теперь, что косинус — это абстракция, которую мы оставили в школе навсегда…

Коротко главном

В интерьере часто приходится выводить прямые углы под мебель или сантехническое оборудование.

С помощью рулетки можно проверить разворот в 90 градусов тремя способами: стороны равны 3/4/5 частей, если между метровыми стенками соединительный отрезок составляет 141,4 см, применяя теорему Пифагора.

Также рулетки достаточно для формирования трех углов в 30, 45 и 60 градусов.

Дополнительно может понадобиться только калькулятор и карандаш для нанесения разметки.

Градусы драматические: косинус 90 градусов равен нулю

А что как напряжение и ток отклоняются друг от друга на 90 градусов?! Ведь косинус такого угла равен нулю. Умножение на ноль есть ноль. Это, что называется, страшный сон энергетиков — ужасная апокалиптическая драма!

Представьте себе, газ сжигается на тепловых электростанциях, вода крутит турбины на гидроэлектростанциях, нейтроны делятся в реакторах атомных электростанций. Ток «бежит» по проводам в дома. А там — косинус угла «фи» равен нулю — полный швах! Батареи не греют, лампочки не светятся, холодильники не работают.

Чтобы мысленный эксперимент с отклонением напряжения и тока на 90 градусов не стал реальностью, энергетики по всему миру постоянно следят за «косинусом фи». Денно и нощно, без устали, без перерывов.

Почему отклоняются напряжение и ток? Из-за потребителей электричества! Нет, не из-за домашних электрических обогревателей. И не из-за домашних лампочек накаливания. Но из-за оборудования заводов и фабрик.

Везде, где крутятся электромоторы, их «кручение» приводит как бы к обратному закручиванию электричества. Работающее оборудование возвращает энергетикам в электрические сети сдвинутое между собой напряжение и ток.

Образно говоря, чтобы крутить моторы, электричество должно «упираться» во что-то. И из-за этого понемногу «проворачивается» в обратную сторону. Что и приводит к возникновению угла сдвига между напряжением и током.

Если не следить за последствиями такого «сдвига», то угол между напряжением и током будет постоянно расти. Косинус фи начнет уменьшаться. Электростанции начнут работать сначала чуть-чуть вхолостую, потом все больше и больше, потом еще больше…

Обозначение углов на чертеже

Чертеж помогает решать задачки по геометрии в разы быстрее. Чтобы наглядно изображать дуги, углы и прочие фигурки, придумали даже отдельное направление — геометрический чертеж.

Задачи с углами могут быть разными и не всегда есть возможность правильно изобразить и отметить угол. Вот, что важно запомнить при обозначении лучей и углов:

  • Равные углы обозначают одинаковым количеством дуг.
  • Неравные углы обозначают разным количеством дуг, чтобы они отличались между собой.
  • Для обозначения на чертеже более трех углов используем разные виды дуг: волнистые, зубчатые.

На чертеже отмечены острые, равные и неравные углы.

обозначение углов

Обозначать углы можно разными цветами. Главное, чтобы было просто и броско. При этом необязательно отмечать все-все углы — достаточно только тех, которые нам нужны для решения задачки.

Градусы из радиоточки

Если напряжение и ток встанут друг относительно друга на 90 градусов — это будет недопустимое отклонение или «сдвиг по фазе на пи пополам»! Тогда электричество останется в проводах, но оно ничего не будет греть, освещать, двигать.

«Сдвиг по фазе на пи пополам» есть расхожее выражение, которое означает абсолютную неприемлемость того или иного действия, поступка.

Пришло оно к нам из того самого электротехнического «косинуса фи».

Про сдвиг между напряжением и током можно написать не одну драму с яркими событиями и участниками. Но мы не будем это делать, ибо наши энергетики не допустят подобного хода событий…

Кстати, кто помнит еще советское радио, что звучало практически в каждом доме? Там по утрам во многих городах сообщали не только про погоду. Погода — это тоже градусы, но другие.

Из радиоточки строго так говорили, обычно после прогноза погоды: «на сегодня режим энергопотребления установлен два тире два» или «. два тире один». Это про «наши» градусы, про «косинус фи»!

Что это за режимы такие: 2-2, 2-1 и другое? То были прямые указания предприятиям, как они должны именно сегодня компенсировать возникающие сдвиги между напряжением и током.

Энергетики шли к компенсирующим установкам и включали озвученные по радио режимы. Вот ведь насколько важны углы! Про них даже по центральному радио (с местным уклоном, разумеется) вещали ежедневно.

А вы говорите градусы, синусы, косинусы! И зачем мы их в школе «проходили», если вокруг нас их как не было, так и нет? Оказывается, были, есть и будут. Даже в обычной электрической розетке, в лампочке, в утюге.

Оцените статью
Рейтинг автора
4,8
Материал подготовил
Максим Коновалов
Наш эксперт
Написано статей
127
А как считаете Вы?
Напишите в комментариях, что вы думаете – согласны
ли со статьей или есть что добавить?
Добавить комментарий