Газотурбинный двигатель самолета. фото. строение. характеристики.
То, как я спроектировал и построил самодельный реактивный двигатель — не лучший способ сделать это. Я могу представить миллион способов и схем, как создать лучшую модель, более реалистичную, более надежную и более простую в изготовлении. Но сейчас я собрал такую.
Основные части реактивного модельного двигателя:
- Двигатель постоянного тока достаточно сильный и минимум на 12 вольт
- Источник постоянного тока не менее 12 вольт (в зависимости от того, какой у вас двигатель постоянного тока).
- Реостат, такой же какой продаётся для настройки яркости лампочек.
- Коробка передач с маховиком, встречается во многих автомобильных игрушках. Лучше всего, если корпус редуктора сделан из металла, потому что пластик может плавиться на таких высоких скоростях.
- Металлический лист, который можно разрезать, чтобы сделать лопасти вентилятора.
- Амперметр или вольтметр.
- Потенциометр примерно на 50К.
- Катушка электромагнита из соленоида или любого другого источника.
- 4 диода.
- 2 или 4 постоянных магнита.
- Картон, чтобы собрать корпус, похожий на корпус реактивного двигателя.
- Наполнитель кузовов для авто, для создания экстерьера.
- Жесткий провод, чтобы поддерживать все. Обычно я использую провода из дешевых вешалок. Они достаточно сильны и достаточно гибки, чтобы придать им нужную форму.
- Клей. Для большинства деталей я предпочитаю горячий клей, но сейчас подойдёт практически любой клей.
- Белая, серебряная и черная краска.
Авиационные газотурбинные двигатели
Всем привет! В этой статье я хочу рассказать о том, как работают авиационные газотурбинные двигатели (ГТД). Я постараюсь сделать это наиболее простым и понятным языком.
Авиационные ГТД можно можно разделить на:
- турбореактивные двигатели (ТРД)
- двухконтурные турбореактивные двигатели (ТРДД)
- Турбовинтовые двигатели (ТВД)
- Турбовальные двигатели (ТВаД)
Начнём с турбореактивных двигателей.
Малый авиационный газотурбинный двигатель
Экспериментальные образцы газотурбинных двигателей (ГТД) впервые появились в преддверии Второй мировой войны. Разработки воплотились в жизнь в начале пятидесятых годов: газотурбинные двигатели активно использовались в военном и гражданском самолетостроении. На третьем этапе внедрения в промышленность малые газотурбинные двигатели, представленные микротурбинными электростанциями, начали широко применяться во всех сферах промышленности.
Устройство и принцип работы агрегата
По своей конструкции движок не очень сложный, он представлен камерой сгорания, где оборудованы форсунки и свечи зажигания, которые необходимы для подачи горючего и добычи искрового заряда. Компрессор оснащен на валу вместе с колесом, обладающим особыми лопатками.
Помимо этого мотор состоит из таких составляющих как — редуктор, канал впуска, теплообменник, игла, диффузор и выпускной трубопровод.
Во время вращения компрессорного вала, воздушный поток, поступающий через канал впуска, захватывается его лопастями. После увеличения скорости компрессора до пятисот м в секунду, он нагнетается в диффузор. Скорость у воздуха на выходе диффузора снижается, но давление увеличивается. Затем воздушный поток оказывается в теплообменнике, где происходит его нагрев за счет отработанных газов, а после этого воздух подается в камеру сгорания.
Вместе с ним туда попадает горючее, которое распыляется через форсунок. После того как топливо перемешивается с воздухом, создается топливно-воздушная смесь, которая загорается благодаря искре получаемой от свечи зажигания. Давление в камере при этом начинает увеличиваться, а турбинное колесо приводится в действие за счет газов попадающих на лопатки колеса.
В итоге осуществляется передача крутящего момента колеса на трансмиссию авто, а отходящие газы выбрасываются в атмосферу.
Двухконтурный турбореактивный двигатель
ТРДД, прежде всего, отличается от ТРД тем, что имеет два контура: внешний и внутренний. Внутренний контур содержит в себе то же самое, что и ТРД: компрессор (разделенный на КНД и КВД), камеру сгорания, турбину (разделенную на ТВД и ТНД) и сопло. Внешний контур представляет собой канал, с соплом в конце. В нем нет ни камеры сгорания, ни турбины. Перед обоими контурами (сразу после входного устройства двигателя) стоит ступень компрессора, работающая на оба контура.
Не очень понятная картина выходит, да? Давайте разберемся как оно работает.
Схематичная конструкция двухвального двухконтурного турбореактивного двигателя
Воздух, попадающий в двигатель, пройдя через первую ступень компрессора низкого давления, разбивается на два потока. Одна часть воздуха идет по внутреннему контуру, где происходят те же процессы, которые были описаны, когда мы разбирали ТРД. Вторая часть воздуха попадает во внешний контур, получив энергию от первой ступени КНД (та, которая работает на два контура). Во внешнем контуре энергия воздуха тратится только на преодоление гидравлических потерь (за счёт трения). В конце этот воздух попадает в сопло внешнего контура, создавая огромную тягу. Тяга, созданная внешним контуром, может составлять 80% тяги всего двигателя.
Одной из важнейших характеристик ТРДД является степень двухконтурности. Степень двухконтурности — это отношение расхода воздуха во внешнем контуре, к расходу воздуха во внутреннем контуре. Это число может быть как больше, так и меньше единицы. На современных двигателях это число переступает за значение в 12 единиц.
Двигатели, степень двухконтурности которых больше двух, принято называть турбовентиляторными, а первую ступень компрессора (ту, что работает на оба контура) вентилятором.
ТРДД самолета Boeing 757-200. На переднем плане видно входное устройство и вентилятор
На некоторых двигателях вентилятор приводится в движение отдельной турбиной, которая ставится ближе всего к соплу внутреннего контура. Тогда двигатель получается трехвальным. Например, по такой схеме выполнены двигатели Rolls Royce RB211 (устанавливались на L1011, B747, B757, B767), Д-18Т (Ан-124), Д-36 (Як-42)
Д-18Т в разрезе изнутри
Главное достоинство ТРДД заключается в возможности создания большой тяги и хорошей экономичности, по сравнению с ТРД.
На этом я хотел бы закончить про ТРДД и перейти к следующему виду двигателей — ТВД.
Проблемы разработки малых ТГД
При уменьшении размера ГТД происходит уменьшение КПД и удельной мощности по сравнению с обычными турбореактивными двигателями. При этом удельная величина расхода топлива так же возрастает; ухудшаются аэродинамические характеристики проточных участков турбины и компрессора, снижается КПД этих элементов. В камере сгорания, в результате уменьшения расхода воздуха, снижается коэффициент полноты сгорания ТВС.
Снижение КПД узлов ГТД при уменьшении его габаритов приводит к уменьшению КПД всего агрегата. Поэтому, при модернизации модели, конструкторы уделяют особое внимание увеличению КПД отдельно взятых элементов, вплоть до 1%.
Для сравнения: при увеличении КПД компрессора с 85% до 86%, КПД турбины возрастает с 80% до 81%, а общий КПД двигателя увеличивается сразу на 1,7%. Это говорит о том, что при фиксированном расходе топлива, удельная мощность увеличится на ту же величину.
Минусы турбомоторов
Какие бы хвалебные слова вы не услышали о моторах с турбинами, они имеют свои недочеты. Недочеты турбомоторов не просто малозначительные мелочи и недоделки, доставшиеся после их выпуска с конвейера, а объективные составляющие. К примеру, одним из них является большое потребление горючего.
Но, хотя недочет этот и значительный, всё же он имеет и позитивные моменты. Например, чем больше данный мотор «скушает» горючки, тем он будет мощнее. К примеру, турбодвигатель в 1400 кубиков может развить параметры с показателями (поразительно!) в 1,7 раз больше, чем аналогичный по объему атмосферник.
Особая специфика турбомотора предполагает тщательное наблюдение за качественными показателями масла. Недостатком тут считается необходимость обслуживания масла как в самом моторе, так и в турбине. И суть этого минуса даже не в расходе масла, который не так существенен, а в непрерывном наблюдении за качеством смазки и минимальные периоды между сменой масла.
Очередным минусом будет повышенная чувствительность к качеству заправляемого горючего. Как бензин, так и дизельное топливо (а оно ещё больше) применимы только высочайшего качества. Если по незнанию “подпитать” атмсферный мотор бензином с октановым числом хуже 95, то трагедии не будет. Это и не советуют практиковать часто, но двигатель стерпит и простит.
А вот с турбомотором не всё так хорошо. Такие бездумные действия мгновенно создадут проблему, которая выразится в значительных и больших затратах на восстановление системы. Именно немалостоящее восстановление обуславливает следующий недочет турбомоторов. В России стоимость восстановления достигает 75000 рублей, а это, бесспорно, значительная сумма.
Но, не смотря ни на что, работа турбомотора на порядок лучше работы обычного, потому что показатели эффективности и мощности намного выше. Владельцев машин с таким двигателем можно только поздравить. Следите за двигателем своего автомобиля, и он отблагодарит Вас высокой эффективностью и стабильным режимом работы в любых условиях.
Турбовальный двигатель
Должно быть, большинство читателей здесь вообще впервые слышат такое название. Такой тип двигателей устанавливается на вертолёты.
Турбовальный двигатель очень схож с турбовинтовым двигателем со свободной турбиной. Он также состоит из компрессора, камеры сгорания, турбины компрессора, далее идёт свободная турбина, связанная со всем предыдущем только газодинамически. А вот реактивную тягу такой двигатель не создаёт, реактивного сопла у него нет, только выхлоп. Свободная турбина имеет свой вал, который соединяется к главному редуктору вертолёта (несущего винта). Да, у всех известных мне вертолетов есть такой редуктор, и, как правило, он внушительных размеров. Дело в том, что обороты несущего винта вертолёта очень низкие. Если у самолета, как я писал выше, они могут достигать 1500 об/мин, то у вертолёта, например у Ми-8, всего 193 об/мин.
А обороты двигателя у вертолёта зачастую очень высокие (из-за небольших размеров), и понижать их приходится в сотню и более раз. Бывает такое, что редуктор стоит и на двигателе, и на самом вертолете, например, у Ми-2 и его двигателя ГТД-350.
Схематичная конструкция турбовального двигателя
Двигатель ТВ3-117 от вертолета Ми-8. Справа видны выхлопная труба и приводной вал
Итак, мы рассмотрели четыре типа газотурбинных двигателей. Надеюсь, мой текст был понятен и полезен для вас. Все вопросы и замечания можете писать в комментариях.
ли со статьей или есть что добавить?