Гипотеза пуанкаре доказательство перельмана

Содержание

Математик Григорий Перельман — лауреат медали Филдса

Гениальный затворник и великий математик Григорий Перельман в 2002 г. доказал теорему Пуанкаре — одну из семи задач тысячелетия (важные математические проблемы, решение которых не найдено в течение десятков лет) — и показал, что исходная трехмерная поверхность (если в ней нет разрывов) обязательно будет эволюционировать в трехмерную сферу. Его работа явилась научным прорывом в изучении проблем Вселенной.

К тому же он уникум, отказавшийся от международных наград и миллионной премии.

Математик Григорий Яковлевич Перельман — личность довольно известная в своих кругах, несмотря на то, что ведет уединенную жизнь и всячески сторонится прессы. Проведенное им доказательство гипотезы Пуанкаре было в 2006 г. подтверждено математическим сообществом и поставило его в один ряд с величайшими учеными в мировой истории. Математик Перельман отказался от множества наград, предоставляемых научным сообществом. Этот человек живет очень скромно и всецело предан науке.

Математик Григорий Перельман, лауреат медали Филдса

Российский математик Перельман Григорий Яковлевич, доказавший гипотезу Пуанкаре: биография, личная жизнь, интересные факты

История человечества знает многих людей, которые благодаря своим выдающимся способностям становились знаменитыми. Однако стоит сказать о том, что редко кому из них удавалось стать настоящей легендой еще при жизни и добиться известности не только в виде размещения портретов в школьных учебниках. Мало кто из знаменитостей достигал такой вершины славы, которая подтверждалась разговорами и мирового научного сообщества, и бабушек, сидящих на лавочке у подъезда.

Но в России такой человек есть. И живет он в наше время. Это математик Перельман Григорий Яковлевич. Основным достижением этого великого российского ученого явилось доказательство гипотезы Пуанкаре.

чем известен григорий перельман

О том, что Григорий Перельман является самым знаменитым в мире математиком, известно даже любому рядовому испанцу. Ведь этот ученый отказался получить Филдсовскую премию, которую ему должен был вручить сам король Испании. А на такое способны, без всякого сомнения, только самые великие люди.

Теорема Пуанкаре простыми словами

Жюль Анри Пуанкаре (1854-1912) возглавлял Парижскую академию наук и был избран в научные академии 30 стран мира. Он имел масштаб Леонардо: его интересы охватывали физику, механику, астрономию, философию. Математики же всего мира до сих пор говорят, что только два человека в истории по-настоящему знали эту науку: немец Давид Гилберт (1862-1943) и Пуанкаре.

Теорема Пуанкаре

В 1904 году учёный опубликовал работу, содержавшую среди прочего предположение, получившее название теорема Пуанкаре. Поиск доказательства истинности этого утверждения занял около века.

Гипотеза Пуанкаре: формулировка и доказательство

Практически каждый человек, даже тот, кто не имеет никакого отношения к математике, слышал слова «гипотеза Пуанкаре», но не все могут объяснить, в чем ее суть. Для многих высшая математика кажется чем-то очень сложным и недоступным для понимания. Поэтому попробуем разобраться, что же означает гипотеза Пуанкаре простыми словами.

  1. Что такое гипотеза Пуанкаре?
  2. Кто такой Пуанкаре?
  3. Доказательство гипотезы

Гипотеза Пуанкаре: история проблемы, доказательство, смысл

По школьному курсу каждый знаком с понятиями теоремы и гипотезы. Как правило, в жизни затрагиваются самые простые и примитивные законы, в то время как математики делают очень сложные предположения и ставят интересные проблемы. Далеко не всегда им самим удается найти решения и доказательства, а в некоторых случаях над этим многие годы бьются их последователи и просто коллеги.

Институт Клея в 2000 году сформировал список из 7 так называемых Проблем Тысячелетия по аналогии с перечнем гипотез, составленным в 1900 году. Те задачи почти все оказались к настоящему времени решены, только одна из них перекочевала в обновленную версию. Сейчас список проблем выглядит следующим образом:

гипотеза пуанкаре

  • гипотеза Ходжа;
  • равенство классов P и NP;
  • гипотеза Пуанкаре;
  • теория Янга-Миллса;
  • гипотеза Римана;
  • существование и гладкость решения уравнений Навье-Стокса;
  • гипотеза Берча-Свиннертон-Дайера.

Все они относятся к различным дисциплинам внутри математики и имеют важное значение. Например, уравнения Навье-Стокса относятся к гидродинамике, а на практике могут описать поведение вещества в земной магме или пригодиться в предсказании погоды. Но все эти проблемы все еще ищут своего доказательства или опровержения. Кроме одной.

Семья

Григорий Перельман родился 13.06.1966 г. в Северной столице России – городе Ленинграде. Отец будущего гения был инженером. В 1993 г. он оставил семью и эмигрировал в Израиль.

Мать Григория, Любовь Лейбовна, работала учителем математики в ПТУ. Она же, владея игрой на скрипке, привила сыну любовь к классической музыке.

Григорий Перельман был не единственным ребенком в семье. У него есть сестра, которая младше него на 10 лет. Зовут ее Елена. Она тоже математик, в свое время окончила Санкт-Петербургский университет (в 1998 г.). В 2003 г. Елена Перельман защитила в институте Рейцмана Реховоте диссертацию на степень доктора философии. С 2007 г. она живет в Стокгольме, где работает программистом.

Основатель топологии

Математический гений Пуанкаре впечатляет количеством разделов науки, где им были разработаны теоретические основы различных процессов и явлений. Во времена, когда ученые совершали прорывы в новые миры космоса и в глубины атома, было не обойтись без единой основы общей теории мироздания. Такой базой стали ранее неизвестные отрасли математики.

Пуанкаре искал новый взгляд на небесную механику, он создал качественную теорию дифференциальных уравнений, теорию автоморфных функций. Исследования ученого стали основой специальной теории относительности Эйнштейна. Теорема Пуанкаре о возвращении говорила среди прочего о том, что понять свойства глобальных объектов или явлений можно исследуя составляющие их частицы и элементы. Это дало мощный толчок научным поискам в физике, химии, астрономии и т.д.

Теорема Пуанкаре простыми словами

Геометрия – отрасль математики, где Пуанкаре стал признанным новатором и лидером мирового масштаба. Теория Лобачевского, открыв новые измерения и пространства, еще нуждалась в ясной и логичной модели, и Пуанкаре придал идеям великого русского ученого прикладной характер.

Развитием неэвклидовой геометрии стало возникновение топологии – отрасли математики, которую называли геометрией размещения. Она изучает пространственные взаимоотношения точек, линий, плоскостей, тел и т.д. без учета их метрических свойств. Теорема Пуанкаре, ставшая символом самых трудноразрешимых задач в науке, возникла именно в недрах топологии.

Что такое гипотеза Пуанкаре?

Формулировка гипотезы в оригинале звучит так: «Всякое компактное односвязное трехмерное многообразие без края гомеоморфно трёхмерной сфере».

Шар – это геометрическое трехмерное тело, его поверхность называется сферой, она двумерна и состоит из точек трехмерного пространства, которые равноудалены от одной, не принадлежащей этой сфере, точки – центра шара. Кроме двумерных сфер, существуют еще трехмерные сферы, состоящие из множества точек четырехмерного пространства, которые так же равноудалены от одной, не принадлежащей сфере, точки – ее центра. Если двухмерные сферы мы можем увидеть собственными глазами, то трехмерные не подвластны нашему зрительному восприятию.

Поскольку мы не имеем возможности увидеть Вселенную, то можно предположить, что она и есть трехмерная сфера, в которой живет все человечество. В этом и состоит сущность гипотезы Пуанкаре. А именно то, что Вселенная имеет следующие свойства: трехмерность, бескрайность, односвязность, компактность. Понятие «гомеоморфность» в гипотезе означает высочайшую степень схожести, подобия, для случая со Вселенной – неотличимость.

Одна из семи задач тысячелетия

В самом начале XXI века одно из подразделений американского университета в Кембридже – математический институт, основанный на средства бизнесмена Лэндона Т. Клэя – опубликовал список Millennium Prize Problems (проблем тысячелетия). Он содержал семь пунктов из классических научных задач, за решение каждой из которых учреждалась премия в миллион долларов:

• Равенство классов P и NP (о соответствии алгоритмов решения задачи и методов проверки их правильности).
• Гипотеза Ходжа (о связи объектов и их подобия, составленного для их изучения из «кирпичиков» с определенными свойствами).
• Гипотеза Пуанкаре (всякое односвязное компактное трёхмерное многообразие без края гомеоморфно трёхмерной сфере).
• Гипотеза Римана (о закономерности размещения простых чисел).
• Теория Янга — Миллса (уравнения из области элементарных частиц, описывающие различные виды взаимодействий).
• Существование и гладкость решений уравнений Навье — Стокса (описывают турбулентность течений воздуха и жидкостей).
• Гипотеза Бёрча — Свиннертон-Дайера (об уравнениях, описывающих эллиптические кривые).

Каждая эта проблема имела очень долгую историю, поиски их решения приводили к возникновению целых новых научных направлений, но единственно правильные ответы на поставленные вопросы не находились. Понимающие люди говорили, что деньги фонда Клэя в безопасности, но так было лишь до 2002 года – появился тот, кто доказал теорему Пуанкаре. Правда, деньги он не взял.

Кто такой Пуанкаре?

Жюль Анри Пуанкаре – величайший математик, который родился в 1854 году во Франции. Его интересы не ограничивались только математической наукой, он изучал физику, механику, астрономию, философию. Был членом более 30 научных академий мира, в том числе Петербургской академии наук. Историки все времен и народов причисляют к величайшим математикам мира Давида Гильберта и Анри Пуанкаре. В 1904 году ученый издал знаменитую работу, которая содержала предположение, известное на сегодняшний день как «гипотеза Пуанкаре». Именно трехмерное пространство для математиков оказалось очень сложным для исследования, найти доказательства других случаев не составило труда. В течение около одного столетия доказывалась истинность этой теоремы.

В начале ХХІ века в Кембридже была учреждена премия в один миллион долл. США за решение этой научной задачи, которая входила в список проблем тысячелетия. Только российский математик из Санкт-Петербурга Григорий Перельман смог это сделать для трехмерной сферы. В 2006 году за это достижение ему была присвоена медаль Филдса, но он отказался от ее получения.

К заслугам в научной деятельности Пуанкаре можно отнести следующие достижения:

  • основание топологии (разработка теоретических основ различных явлений и процессов);
  • создание качественной теории дифференциальных уравнений;
  • разработка теории аморфных функций, которая стала основой специальной теории относительности;
  • выдвижение теоремы о возвращении;
  • разработка новейших, эффективнейших методов небесной механики.

Отношения в коллективе

В школе будущий математик Перельман был любимцем. Ему симпатизировали не только учителя, но и одноклассники. Гриша не был зубрилкой и заучкой. Не позволял себе он и козырять полученными знаниями, глубина которых порой приводила в замешательство даже учителей. Он просто был талантливым ребенком, увлекавшимся не только доказательством сложных теорем, но и классической музыкой. Девочки ценили своего одноклассника за неординарность и ум, а мальчики – за твердый и спокойный характер. Гриша не только учился с легкостью. Он помогал в овладении знаний и своим отстающим одноклассникам.

В советские времена к каждому двоечнику прикрепляли сильного ученика, который помогал ему подтянуться по какому-либо предмету. Такое же поручение было дано и Григорию. Ему пришлось помогать однокласснику, которого учеба абсолютно не интересовала. Не прошло и двух месяцев занятий, как Гриша сделал из двоечника твердого хорошиста. И в этом нет ничего удивительного. Ведь подача сложного материала на доступном уровне – это одна из уникальных способностей известного российского математика. Во многом благодаря этому качеству в будущем и была доказана Перельманом Григорием теорема Пуанкаре.

Классическая формулировка

Гипотеза, для которой найдено подтверждение, становится теоремой, имеющей корректное доказательство. Именно это произошло с высказанным Пуанкаре предположением о свойствах трехмерных сфер. В более общем виде этот постулат говорил о гомеоморфности всякого многообразия размерности n и сферы размерности n как необходимом условии их гомотопической эквивалентности. Знаменитая теперь теорема Пуанкаре относится к варианту, когда n=3. Именно в трехмерном пространстве математиков ждали затруднения, для других случаев доказательства были найдены быстрее.

Чтобы хоть немного постичь смысл теоремы Пуанкаре, не обойтись без знакомства с основными понятиями топологии.

Формулировка

Пуанкаре изначально оставил такое утверждение: всякое односвязное компактное трёхмерное многообразие без края гомеоморфно трёхмерной сфере. В дальнейшем оно было расширено и обобщено. И все же на протяжении длительного времени именно изначальная задача вызывала больше всего проблем, и была решена лишь через 100 лет после ее появления.

чары гипотезы пуанкаре

Формула Вселенной

Еще в 1900 г. в Париже Давид Гильберт на математическом конгрессе предложил список, включающий 23 проблемы, которые нужно решить в XX в. На сегодняшний день разрешено уже 21 из них. В начале XXI в. в американском Институте Клэя был составлен подобный ему список, состоящий из семи задач по математике. Их следует решить уже в XXI в. Награда в миллион долларов была объявлена за решение каждой из них. Еще в 1904 г. Пуанкаре сформулировал одну из этих задач. Он выдвинул гипотезу о том, что в четырехмерном пространстве все трехмерные поверхности, гомотипически эквивалентные сфере, являются гомеоморфными ей. Говоря простыми словами, если трехмерная поверхность похожа в чем-то на сферу, то существует возможность расправить ее в сферу. Это утверждение ученого иногда называют формулой Вселенной из-за его большой важности в понимании сложных физических процессов, а также из-за того, что ответ на него означает решение вопроса о форме Вселенной. При этом следует отметить, что это открытие играет большую роль и в развитии нанотехнологий.

Итак, математический Институт Клэя решил выбрать семь самых трудных задач. За решение каждой из них было обещано по миллиону долларов, и вот появляется со своим открытием Григорий Перельман. Вполне логично, что премия по математике достается именно ему. Следует отметить, что его заметили быстро и довольно давно, так как он с 2002 г. публиковал свои наработки на зарубежных интернет-ресурсах, о чем указывалось выше.

Студенческие годы

После успешного окончания школы Григорий Перельман стал студентом Ленинградского государственного университета. Его без всяких экзаменов зачислили на математико-механический факультет этого высшего учебного заведения.

 перельман григорий теорема пуанкаре [2], теорема пуанкаре математическая формула вселенной григорий перельман

Гомеоморфизм

Топология, говоря о гомеоморфизме, определяет его как взаимно-однозначное соответствие между точками одной и другой фигуры, в некотором смысле неотличимость. Неподготовленному сложно даётся теорема Пуанкаре. Для чайников можно привести самый популярный пример гомеоморфных фигур – шар и куб, также гомеоморфны бублик и кружка, но не кружка и куб. Фигуры гомеоморфны, если одну фигуру можно получить произвольной деформацией из другой, причем это преобразование ограничено некоторыми свойствами поверхности фигуры: её нельзя рвать, прокалывать, разрезать.

Если куб раздуть, он легко может стать шаром, если шар примять встречными движениями, можно получить кубик. Наличие дырки у бублика и дырки, образованной ручкой у кружки, делает их гомеоморфными, та же дырка делает невозможным превращение кружки в шар или куб.

Интерпретация и смысл

О том, что такое гомеоморфность, речь уже шла. Теперь стоит поговорить о компактности и односвязности. Первое означает лишь, что многообразие имеет ограниченные размеры, не может быть непрерывно и бесконечно растянуто.

Что касается односвязаности, можно попробовать привести простой пример. Двумерная сфера – яблоко – обладает одним интересным свойством. Если взять обычную замкнутую резинку и приложить ее к поверхности, то плавной деформацией ее можно свести в одну точку. Это и есть свойство односвязаности, но представить его применительно к трехмерному пространству довольно затруднительно.

Если говорить совсем просто, проблематика заключалась в том, чтобы доказать, что односвязность – уникальное для сферы свойство. И если, условно говоря, опыт с резинкой завершился с таким результатом, то тело гомеоморфно ей. Что же касается приложения этой теории к жизни, Пуанкаре считал, что Вселенная в некотором смысле и является трехмерной сферой.

смысл гипотезы пуанкаре

Дальнейшее обучение

После окончания с отличием университета Григорий Перельман поступил в аспирантуру. Его научным руководителем в те годы был известный математик А.Д. Александров.

 григорий перельман личная жизнь

Аспирантура находилась при Ленинградском отделении института математики им. В.А. Стеклова. В 1992 г. Григорий Яковлевич защитил кандидатскую диссертацию. Тема его работы касалась седловых поверхностей в евклидовых пространствах. Позже Перельман остался работать в этом же институте, заняв должность старшего научного сотрудника в лаборатории математической физики. В этот период он продолжил изучение теории пространства и смог доказать несколько гипотез.

Связность

Дырка – важное понятие, определяющее свойства объекта, но категория совершенно не математическая. Было введено понятие связности. Его содержат многие топологические постулаты, в том числе и теорема Пуанкаре. Простыми словами можно говорить так: если поверхность шара обернуть петлей из резиновой ленты, она, сжимаясь, соскользнёт. Этого не произойдет, если имеется отверстие, как у тора-бублика, сквозь которое можно продеть эту ленту. Таким образом определяется главный признак сходства или отличия объектов.

Доказательство

Не стоит думать, что из десятков математиков, работавших по всему миру, никто не продвинулся ни на йоту, занимаясь этой проблемой. Наоборот, прогресс был, и в конце концов он привел к результату. Сам Пуанкаре не успел закончить работу, но его исследования серьезно продвинули всю топологию.

В 1930-х годах интерес к гипотезе вернулся. Прежде всего, формулировка была расширена до “n-мерного пространства”, а потом американец Уайтхед сообщил об успешном доказательстве, позднее отказавшись от него. В 60-70-х сразу два математика – Смейл и Столлингс – практически одновременно, но разными способами разработали решение для всех n больше 4.

перельман

В 1982 году и для 4 было найдено доказательство, оставалось только 3. В том же году Терстон сформулирован гипотезу о геометризации, при этом теория Пуанкаре стала ее частным случаем.

Дальше работа несколько застопорилась – американец Ричард Гамильтон предложил использовать в решении поток Риччи, но столкнулся с трудностями и не завершил исследования.

На 20 лет гипотеза Пуанкаре была как будто забыта. В 2002 году российский математик Григорий Перельман представил решение в общих чертах, спустя полгода сделав некоторые дополнения. Уже позже это доказательство проверяли и доводили “до блеска” американские и китайские ученые. А сам Перельман словно потерял к проблеме весь интерес, хотя он решил более общую задачу о геометризации, для которой гипотеза Пуанкаре является лишь частным случаем.

Многообразие

Если объект или пространство разделить на множество составных частей – окрестностей, окружающих какую-то точку, – то их общность называют многообразием. Именно такое понятие содержит теорема Пуанкаре. Компактность означает конечное число элементов. Каждая отдельная окрестность подчиняется законам традиционной – эвклидовой – геометрии, но вместе они образуют нечто более сложное.

Самая адекватная аналогия этих категорий – поверхность земли. Изображение её поверхности представляет собой карты отдельных её районов, собранные в атлас. На глобусе эти изображения обретают форму шара, который относительно пространства Вселенной превращается в точку.

Признание и оценки

Разумеется, это сразу стало сенсацией, ведь решение одной из Проблем Тысячелетия просто не могло оказаться незамеченным. Еще больше удивления вызывал тот факт, что Григорий Перельман отказался от всех наград и премий, сообщив, что ему и так прекрасно живется. В умах обывателей он сразу стал примером того самого полусумасшедшего гения, которого интересует только наука.

Все это вызвало много обсуждений в прессе и СМИ, что популярность математика стала его тяготить. Летом 2014 года прошла информация о том, что Перельман уехал работать в Швецию, но это оказалось лишь слухами, он все еще скромно живет в Санкт-Петербурге и почти ни с кем не общается. Среди наград, присужденных ему, были не только премия института Клея, но и престижная медаль Филдса, но он отказался от всего. Впрочем, Гамильтон, который по оценкам Перельмана сделал не меньший вклад в доказательство, тоже не был забыт. В 2009 и 2011 годах он также удостоился некоторых престижных наград и премий.

доказательство гипотезы пуанкаре

Возвращение в Россию

В 1996 г. Григорий Яковлевич вернулся назад в Санкт-Петербург. Он вновь получил должность научного сотрудника в институте им. Стеклова. В это же время он в одиночку работал над гипотезой Пуанкаре.

Трехмерная сфера

По определению, сфера – совокупность точек, которые равноудалены от центра – некой фиксированной точки. Одномерная сфера расположена в двухмерном пространстве в виде окружности на плоскости. Двухмерная сфера – поверхность шара, его «корочка» – совокупность точек в трехмерном пространстве и, соответственно, трехмерная сфера – суть теоремы Пуанкаре – поверхность четырехмерного шара. Вообразить такой объект очень трудно, но, говорят, мы – внутри такого геометрического тела.

Математики приводят ещё и такое описание трехмерной сферы: допустим, что к нашему привычному пространству, считаемому неограниченным и определяемому тремя координатами (X, Y, Z), добавлена точка (на бесконечности) таким образом, что в неё всегда можно попасть, двигаясь в любом направлении по прямой линии, т.е. любая прямая в этом пространстве становится окружностью. Говорят, что есть люди, которые могут это вообразить и спокойно ориентироваться в таком мире.

Для них обычное дело – трехмерный тор. Такой объект можно получить путем дважды повторенного совмещения в одну точку двух, расположенных на противоположных (например, правой и левой, верхней и нижней) гранях куба. Чтобы попытаться представить трехмерный тор с привычных нам позиций, следует провести абсолютно нереальный эксперимент: необходимо выбрать направления, взаимно перпендикулярные, – вверх, влево и вперед – и начать двигаться в любом из них по прямой. Через какое-то (конечное) время с противоположного направления мы вернемся в исходную точку.

Такое геометрическое тело имеет принципиальное значение, если хотеть понять, что такое теорема Пуанкаре. Доказательство Перельмана сводится к обоснованию существования в трехмерном пространстве лишь одного односвязного компактного многообразия – 3-сферы, другие, как 3-тор, неодносвязные.

Отражение в культуре

Несмотря на то что для простых обывателей как постановка, так и решение этой проблемы представляют мало смысла, о доказательстве стало известно довольно быстро. В 2008 году по этому поводу японским режиссером Масахито Касуга был снят документальный фильм “Чары гипотезы Пуанкаре”, посвященный столетним попыткам решить эту задачу.

В съемках приняли участие многие математики, занимавшиеся этой проблемой, но вот главный герой – Григорий Перельман – сделать этого не захотел. Более или менее близкие его знакомые также были задействованы в съемках. Документальный фильм, выйдя на экраны на волне общественного резонанса по поводу отказа ученого принять премию, в определенных кругах снискал славу, а также получил несколько наград. Что же касается массовой культуры, простые люди до сих пор гадают, какими доводами руководствовался петербургский математик, отказавшись взять деньги, когда он мог отдать их, например, на благотворительность.

Описание теории

Проблема возникла в 1904 г. Именно тогда французским ученым Андри Пуанкаре, которого в научных кругах считали математическим универсалом из-за разработки новых методов небесной механики и создания топологии, выдвинул новую математическую гипотезу. Он предположил, что окружающее нас пространство представляет собой трехмерную сферу.

Описать суть гипотезы для простого обывателя довольно сложно. В ней слишком много научных выкладок. В качестве примера можно представить себе обычный воздушный шарик. В цирке из него могут сделать самые разнообразные фигурки. Это могут быть собачки, коники и цветочки. И что в итоге? Шарик от этого остается таким же. Он не меняет ни своих физических свойств, ни молекулярного состава.

Так же обстоит дело и с этой гипотезой. Ее тема относится к топологии. Это раздел геометрии, изучающий то многообразие, которым обладают пространственные объекты. Топология рассматривает различные, внешне не похожие друг на друга предметы и находит в них общие черты.

Пуанкаре же попытался доказать тот факт, что наша Вселенная имеет форму сферы. По его теории все односвязные трехмерные многообразия имеют одинаковое устройство. Односвязными они являются из-за наличия единой непрерывной области тела, в которой нет никаких сквозных отверстий. Это может быть лист бумаги и стакан, веревка и яблоко. А вот дуршлаг и чашка с ручкой относятся к совершенно другим предметам по своей сути.

Из топологии вытекает понятие геоморфизма. Оно включает в себя понятие геоморфных предметов, то есть таких, когда из одного можно получить другой путем растяжения или сжатия. Например, шар (кусок глины), из которого гончар делает обычный горшок. А если изделие не понравится мастеру, то он тут же может превратить его обратно в шар. Если же гончар решит слепить чашку, то ручку для нее придется делать отдельно. То есть свой объект он создает уже другим способом, получая не цельное, а составное изделие.

Предположим, что все предметы, находящиеся в нашем мире, состоят из эластичного, но в то же время неклейкого вещества. Этот материал не позволяет нам склеивать отдельные части и заклеивать отверстия. С его помощью можно только сжимать или выдавливать. Только в таком случае получиться новая форма.

В этом и состоит основной смысл гипотезы Пуанкаре. Она гласит о том, что если взять любой трехмерный предмет, не имеющий отверстий, то он, при выполнении различных манипуляций, но без склеивания и разрезания, может принять форму шара.

Однако гипотеза является лишь высказанной версией. И это продолжается до того момента, пока ей не найдется точное объяснение. Предположения Пуанкаре и оставались таковыми, пока они не были подтверждены точными расчетами молодого российского математика.

Долгий путь к истине

Прошло более полувека, прежде чем появилось решение теоремы Пуанкаре для больших чем 3 размерностей. Стивен Смэйл (род. 1930), Джон Роберт Стэллингс (1935-2008), Эрик Кристофер Зиман (род. 1925) нашли решение для n, равного 5, 6 и равного или больше 7. Только в 1982 году Майкл Фридман (род. 1951) был удостоен высшей математической награды – Филдсовской премии – за доказательство теоремы Пуанкаре для более сложного случая: когда n=4.

Кто доказал теорему Пуанкаре

Работа над проблемой

На доказательство гипотезы Пуанкаре Григорий Перельман потратил несколько лет своей жизни. Все это время он думал только о своей работе. Он постоянно искал верные пути и подходы к решению проблемы и понимал, что доказательство находится где-то рядом. И математик не ошибся.

Еще в студенческие годы будущий ученый часто любил повторять фразу о том, что не существует неразрешимых задач. Есть только трудноразрешимые. Он всегда полагал, что все зависит только от исходных данных и того времени, которое тратится на поиск недостающих.

григорий перельман

После возвращения в Россию Перельман буквально с головой окунулся в работу над проблемой. И уже через небольшой промежуток времени ему удалось значительно продвинуться в этом вопросе. К решению задачи он подошел совершенно нестандартно. В качестве инструмента доказательства он использовал потоки Риччи.

Свои расчеты Перельман отослал американскому коллеге. Однако тот даже не попытался вникнуть в выкладки молодого ученого и наотрез отказался от проведения совместной работы.

Конечно, его сомнения можно легко объяснить. Ведь приводя доказательства, Перельман больше опирался на постулаты, имеющиеся в теоретической физике. Топологическая геометрическая задача решалась им с помощью смежных наук. Этот способ был на первый взгляд совершенно непонятен. Гамильтон не стал разбираться в расчетах и скептически отнесся к неожиданному для него симбиозу, который был применен в качестве доказательств.

Обыкновенный гений

Григорий Яковлевич родился 13 июня в Ленинграде, в интеллигентной семье. Отец – инженер-электрик – в начале 90-х уехал на ПМЖ в Израиль, мать преподавала математику в ПТУ. Кроме любви к хорошей музыке, она привила сыну увлечение решением задач и головоломок. В 9-м классе Григорий перевелся в физико-математическую школу № 239, но еще с 5-го класса он посещал математический центр при Дворце пионеров. Победы во всесоюзных и международных олимпиадах позволили поступить Перельману в Ленинградский университет без экзаменов.

Многие специалисты, особенно российские, отмечают что Григорий Яковлевич был подготовлен к невиданному взлету высоким классом ленинградской школы геометров, какую он прошел на мехмате Ленинградского госуниверситета и в аспирантуре при Математическом институте им. В.А. Стеклова. Став кандидатом наук, он стал работать в нем.

Теорема Пуанкаре доказательство

Он занимался тем, что было ему интересно

Для того чтобы доказать теорему Пуанкаре (математическую формулу Вселенной), Григорий Перельман долгие семь лет не появлялся в научных кругах. Коллеги не знали, какие он ведет разработки, какова сфера его занятий. Многие даже не могли ответить на вопрос «Где сейчас Григорий Перельман?».

Все разрешилось в ноябре 2002 г. Именно в этот период на одном из научных ресурсов, где можно было ознакомиться с новейшими разработками и статьями физиков, появилась 39-страничная работа Перельмана, в которой были приведены доказательства теоремы геометризации. Гипотеза Пуанкаре рассматривалась в качестве частного примера, позволяющего объяснить суть проведенного исследования.

Одновременно с этой публикацией Григорий Яковлевич отправил выполненную им работу Ричарду Гамильтону, а также математику Жэнь Тяню из Китая, с которым общался еще в Нью-Йорке. Получили доказательство теоремы и еще несколько ученых, мнению которых Перельман особенно доверял.

Почему труд нескольких лет жизни математика был так легко отпущен на свободу, ведь эти доказательства могли быть попросту украдены? Однако Перельман, выполнивший работу на миллион долларов, вовсе не хотел разжиться на ней или подчеркнуть свою уникальность. Он полагал, что если в его доказательствах есть ошибка, то они могут быть взяты за основу другим ученым. И это уже доставило бы ему удовлетворение.

Да, Григорий Яковлевич никогда не был выскочкой. Он всегда точно знал, чего он хочет от жизни, и имел по любому поводу собственное мнение, которое часто отличалось от общепринятого.

Верное направление

Григорий Яковлевич отмечает, что его всегда увлекали сложные проблемы, такие как теорема Пуанкаре. Доказательство Перельман стал искать в направлении, вынесенном из беседы с профессором Колумбийского университета Ричардом Гамильтоном (род. 1943). Во время пребывания в США он специально ездил из другого города на лекции этого неординарного ученого. Перельман отмечает прекрасное доброжелательное отношение профессора к молодому математику из России. В их разговоре Гамильтон упомянул о потоках Риччи – системе дифференциальных уравнений – как способе решения теорем геометризации.

Перельман доказал теорему Пуанкаре

Гамильтон пришел в тупик, когда увидел, что при преобразованиях кривых под действием потоков Риччи образуются сингулярные (обращающиеся в бесконечность) зоны, которые не предусматривала теорема Пуанкаре. Простыми словами, Перельману удалось нейтрализовать образование таких зон, и многообразие благополучно превратилось в сферу.

Не в деньгах счастье

Чем известен Григорий Перельман? Не только тем, что доказал гипотезу, внесенную в список семи математических проблем тысячелетия, не решенных учеными. Дело в том, Перельман Григорий отказался от премии в миллион долларов, которую ему готов был выплатить Бостонский институт математики им. Клэя. И это не сопровождалось никакими объяснениями.

математик перельман

Интерес к гипотезе у Григория Яковлевича перешел в категорию «выполненных дел». Нужен ли истинному математику миллион долларов? Нет! Главное для него – чувство собственной победы. И измерить его земными мерками просто невозможно.

Согласно правилам, присуждение премии Клэя возможно в том случае, когда человек, решивший одну или сразу несколько «задач тысячелетия», отправит свою научную статью в редакцию журнала института. Здесь ее подробно рассматривают и тщательно проверяют. И лишь спустя два года может быть вынесен вердикт, который подтвердит или опровергнет правильность решения.

Проверка результатов, полученных Перельманом, была осуществлена с 2004 по 2006 гг. Занималось этой работы три независимых друг от друга группы математиков. Все они сделали однозначный вывод о том, что гипотеза Пуанкаре доказана полностью.

Премия Григорию Перельману была присуждена в марте 2010 г. Впервые в истории награда должна была быть вручена за решение одной из задач, находящихся в списке «математических проблем тысячелетия». Однако на конференцию в Париже Перельман просто не приехал. 1.07.2010 г. о своем отказе от премии он заявил публично.

Конечно, для многих людей поступок Перельмана кажется необъяснимым. Человек запросто отказался от почестей и славы, а также упустил шанс переселиться в Америку и безбедно жить там до конца своих дней. Однако для Григория Яковлевича все это не несет в себе никакой смысловой нагрузки. Так же, как когда-то школьные уроки физкультуры.

Затворничество

На сегодняшний день ни словом, ни делом не напоминает о себе Григорий Перельман. Где живет этот выдающийся человек? В Ленинграде, в одной из обычных многоэтажек в Купчино. Вместе с матерью живет Григорий Перельман. Личная жизнь у него не сложилась. Однако математик не оставляет надежды завести семью.

перельман григорий теорема пуанкаре

Григорий Яковлевич с российскими журналистами не общается. Свои контакты он сохранил только с зарубежной прессой. Однако, несмотря на затворничество, интерес к этому человеку не угасает. О нем пишут книги. Григория Перельмана нередко упоминают в научных статьях и очерках. Где сейчас Григорий Перельман? По-прежнему на родине. Многие считают, что услышат это имя еще не раз, а может быть, и в связи с решением очередной «проблемы тысячелетия».

Нет пророка…

Он взошел на свой Эверест, каким признается математиками теорема Пуанкаре. Доказательство Перельман выложил в Интернет в виде трех небольших статей. Они немедленно вызвали ажиотаж, хотя русский математик не пошел положенной дорогой – публикация в специализированном журнале в сопровождении профессиональных рецензий. Григорий Яковлевич в течение месяца разъяснял в университетах США суть своего открытия, но число до конца понявших ход его мысли увеличивалось очень медленно.

Лишь через четыре года появилось заключение самых больших авторитетов: доказательства русского математика корректны, первая из проблем тысячелетия решена.

Эпоха соцсетей

Ему пришлось пережить ажиотаж и хамство в соцсетях, молчание тех, кого он уважал, и крики других, учивших его жизни. Энергичные китайцы сначала оценили его вклад в решение проблемы в 25 %, себе и другим насчитав 80! Потом вроде бы пришло мировое признание, но выдержать такое дано не каждому.

Оцените статью
Рейтинг автора
4,8
Материал подготовил
Максим Коновалов
Наш эксперт
Написано статей
127
А как считаете Вы?
Напишите в комментариях, что вы думаете – согласны
ли со статьей или есть что добавить?
Добавить комментарий