Что такое сила тяги и по какой формуле её находить ?
Разберёмся в вопросе, что такое сила тяги. Как следует из самого названия – это сила, которую необходимо прикладывать к телу, чтобы оно находилось в состоянии постоянного движения.
Если её убрать, то тело, будь то автомобиль, электровоз, космическая ракета или санки, со временем остановится. Это произойдёт потому, что на тело всегда действуют силы, которые заставляют его стремиться к состоянию покоя:
- силы трения (покоя, качения, скольжения),
- сопротивления воздуха (газа),
- сопротивления воды и др.
Формула силы тяги при равномерном движении
Разберёмся в вопросе, что такое сила тяги. Как следует из самого названия – это сила, которую необходимо прикладывать к телу, чтобы оно находилось в состоянии постоянного движения.
Если её убрать, то тело, будь то автомобиль, электровоз, космическая ракета или санки, со временем остановится. Это произойдёт потому, что на тело всегда действуют силы, которые заставляют его стремиться к состоянию покоя:
- силы трения (покоя, качения, скольжения),
- сопротивления воздуха (газа),
- сопротивления воды и др.
Сила тяги
Из этой статьи вы узнаете о первом и втором законах Ньютона и силе тяги как силе, преодолевающей сопротивление для поддержания движения.
Второй закон Ньютона (Расчёты Примеры)
Второй закон Ньютона это закон который был выведен в результате проведения опытов Ньютоном.
В результате чего были выведена новая формула второго закона ньютона а = F /m,
Сила трения: вывод формулы силы трения через массу
Одной из наиболее интересных тем школьной программы по физике является «сила трения». Она достаточно доступна в понимании учащихся и быстро поддается осмыслению, так как её наличие можно проверить, не отходя от парты.
Стоит начать с определения самого понятия. Сила трения — есть итог сопротивления движению физических тел. Иными словами, она появляется, когда происходит относительное перемещение между взаимодействующими телами.
Различают по его области:
- Внешнее — зарождается при непосредственном движении действующих друг на друга тел,
- Внутреннее — возникает между частями одного предмета.
Первый и второй законы Ньютона
Обратимся к законам Ньютона, которые хорошо описывают механическое движение тел. Из школьной программы мы знаем, что есть первый закон Ньютона, который описывает закон инерции. Он гласит, что любое тело, если на него не действуют силы, или если их равнодействующая равна нулю, движется прямолинейно и равномерно, или же находится в состоянии покоя. Это означает, что тело, пока на него ничто не действует, будет двигаться с постоянной скоростью v=const или пребывать в состоянии покоя сколько угодно долго, пока какое-то внешнее воздействие не выведет тело из этого состояния. Это и есть движение по инерции.
Надо сказать, что этот закон справедлив лишь в так называемых инерциальных системах отсчёта. В неинерциальных системах отсчёта этот закон не действует и нужно использовать второй закон Ньютона. В таких системах отсчёта тело тоже будет двигаться по инерции, но оно будет двигаться с ускорением, стремясь сохранять своё движение, т.е. на него также не будут действовать никакие внешние силы, кроме силы инерции, стремящейся двигать тело в том направлении, в каком оно двигалось до воздействия. Тут мы приходим к рассмотрению второго закона Ньютона, который также справедлив в инерциальных системах отсчёта, т. е. в таких системах отсчёта, в которых тело движется с постоянной скоростью либо находится в покое.
Этот закон утверждает, что для того, чтобы вывести тело из состояния покоя или равномерного движения, к нему необходимо приложить силу, равную F=m•a, где m — это масса тела, a — ускорение, сообщаемое телу. Зная эти законы, можно рассчитать силу тяги (двигателя автомобиля, ракетного двигателя или, например, лошади, тянущей нагруженную повозку).
Основная формула силы трения
Ввиду отсутствия в природе абсолютно твердых тел сила трения существует постоянно, и его наличие разъясняют действием даже микроскопически шероховатых поверхностей между собой. Результат при умножении силы реакции опоры на коэффициент трения есть:
В СИ (международная система единиц) измеряется F тр. в Ньютонах (Н).
Нужно знать, что противоположно ходу движения направлена F тр., а N против силы тяжести и перпендикулярно поверхности. Безразмерная величина k не зависит от площади соприкасания тел, а зависит от степени шероховатости и типа материалов трущихся тел.
Необходимо иметь полное представление о физических величинах, участвующих в основной формуле. В первую очередь, F тр. это векторная величина, то есть она имеет направление. Следовательно, нужно знать направление и точку ее приложения. Приложена она в области соприкосновения поверхностей, а направлена против движения объекта.
Из названия нормальной реакции опоры понятно, что она показывает реакцию самой опоры, а возникает на молекулярном уровне. Направлена против силы, с которой предмет давит на поверхность.
Коэффициент пропорциональности k является связующим звеном между F тр. и силой нормальной реакции. Если k соответствует наибольшей F тр. пок., то в большинстве своих случаев он больше коэффициента скольжения.
Коротко о типах трения
Отличают такие разновидности, как:
- покоя,
- скольжения,
- качения.
Прилагая минимум F тр. пок., объект начнет свое движение. Она не определяется достаточно точно и зависит от приложенного усилия. Поразительно, но именно оно разгоняет тела. F тр. пок. не исчезает бесследно, после того, как привела в движение предмет, она превращается в F тр. , а, следовательно, не может бесконечно увеличиваться — есть верхний максимальный предел, равный по величине F тр. скольжения.
В названии «сила трения качения» скрыта суть самого явления. Она намного меньше трения скольжения и возникает во время качения одного тела по-другому, скорости их соприкосновения в точках касания одинаковы по направлению и значению.
Типы трения скольжения различают по физике взаимодействия:
- Вязкое. Появляется, когда взаимодействующие тела разделены между собой слоем жидкости, газа или иного смазочного материала различного размера. F тр. пок. отсутствует. Абсолютная величина этой силы сопротивления зависит от скорости: прямо пропорциональна скорости при малых скоростях движение и прямо пропорциональна ее квадрату при больших.
- Сухое. Дополнительным смазочным материалом соприкасающиеся тела не разделены. Может возникать даже при отсутствии относительного движения предметов. Особый пример — F тр. покоя . Существует вид сухого взаимодействия с сухой смазкой, как пример, со слоем графитового порошка.
- Граничное. Одновременное содержание и слоев, и частей отличных по природе.
- Смешанное. Имеются участки частичной смазки.
Формула выглядит следующим образом:
Использовались такие физические величины, как, μ — коэффициент трения скольжения, N — сила реакции опоры.
Также можно вывести формулу через массу:
где N = mg, g — свободного падения.
Что такое сила тяги
Сила тяги — сила, прикладываемая к телу для поддержания его в постоянном движении.
Сила тяги: определение
Силой тяги называют силу, прикладываемую к телу для поддержании его в постоянном движении.
Прекращение действия силы тяги приводит к остановке вследствие трения, вязкости окружающей среды и других противодействующих движению сил.
Тело, на которое не действуют силы, движется с постоянной скоростью $v = const$ (первый закон Ньютона). Частным случаем такого движения является состояние покоя ($v = 0$). Движение с постоянной скоростью называют состоянием инерции. Чтобы вывести тело из такого состояния, нужно приложить к нему силу. Скорость тела в этом случае изменится, т.е. оно получит ускорение (либо замедление, которое можно считать отрицательным ускорением).
Величина ускорения обратнопропорциональна массе тела (чем оно массивнее, тем труднее его вывести из состояния инерции) и прямопропорциональна интенсивности приложенной силы. Таким образом:
Эта формула отражает Второй закон Ньютона.
Попробуй обратиться за помощью к преподавателям
Формула коэффициента пропорциональности μ
В формуле, описывающей процесс приложения F тр. к любому телу, принимает участие коэффициент пропорциональности. Он выражается исключительно числами и почти при любых обстоятельствах меньше единицы. Это величина, зависящая от материала взаимодействующих объектов и от степени обработки их поверхностей.
Данную формулу можно вывести через массу и ускорение свободного падения:
μ =Fmg, где замена N происходит ранее описанным способом.
Трение повинуется третьему закону Ньютона, так как является разновидностью взаимодействия. А конкретно, если F тр. действует на один из объектов, то такая же в точности сила по модулю, но устремленная противоположно оказывает воздействие и на второе тело. Все силы противодействия возникают как результат молекулярного и атомного взаимодействия трущихся тел.
В заключение приведены слова Шарля Гийом (1861−1938): «Вообразим, что трение может быть устранено совершенно. Тогда никакие тела, будь они величиною с каменную глыбу или малы, как песчинка, никогда не удержатся одно на другом: все будет скользить и катиться, пока не окажется на одном уровне. Не будь трения, Земля представляла бы шар без неровностей, подобно жидкому».
Действие силы тяги
Множество сил, действующих на движущийся объект, для упрощения вычислений делят на две группы: силу тяги и силы сопротивления.
Её прекращение
Когда действие силы тяги прекращается, движущееся тело замедляется и постепенно останавливается, так как на него воздействуют силы, мешающие продолжать двигаться, например, трение.
Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.
1 закон Ньютона о действии
Согласно этому закону в формулировке самого Ньютона, любое тело остается в покое или равномерно движется по прямой, пока на него не воздействуют силы, заставляющие его изменить это состояние.
В современной физике в формулировку внесены уточнения:
- закон применим только в системах отсчета, называемых инерциальными;
- тело может вращаться на месте, не находясь под воздействием внешних сил, поэтому вместо термина «тело» следует использовать термин «материальная точка».
Чтобы переместить неподвижный предмет, на него должна воздействовать некая сила. Чтобы изменить скорость движения предмета, также необходимо воздействие силы, замедляющей его или ускоряющей. Так как предметы обладают разной массой и соответственно разной инертностью, силы, достаточные для эффективного воздействия, тоже будут различаться.
Состояние ускорения после воздействия силы тяги
Когда движение равномерное, сила тяги и сила трения совершают одинаковую работу, уравновешивая друг друга. Воздействие силы на тело в направлении движения придает ему ускорение. Если направить ту же силу в противоположном направлении, она замедлит движение тела, что можно назвать отрицательным ускорением.
Формулы для расчета
В качестве примера силы тяги, выводящей тело из состояния покоя, можно рассмотреть спортсмена, поднимающего штангу. В исходном состоянии штанга находится в состоянии инерции (остается неподвижной). Когда спортсмен отрывает ее от земли, его мышцы должны сокращаться с такой силой, чтобы она превысила вес штанги, т.е. силу, с которой ее притягивает гравитационное поле Земли. Если штангисту удастся оторвать штангу от пола – значит она переместится вверх на некоторое расстояние, т.е. получит ускорение. Т.е. силой тяги, двигающей данный снаряд, является сила сокращающихся мышц спортсмена. При этом должно соблюдаться условие:
$F_м$ > $F_т$, т.е. $F_м$ >$ m cdot g$,
где $F_м$ – сила мышц (в данном случае сила тяги), $F_т$ – сила тяжести (гравитация), $m$ – масса, $g$ – ускорение свободного падения.
Состояние движения по инерции следует отличать от равномерного движения, когда сила тяги уравновешивается противодействующими силами. Например, при движении автомобиля работающий двигатель через систему трансмиссии передает на колеса силу, преодолевающую силы трения внутри механизмов автомобиля, трения колес о поверхность дороги, сопротивления воздуха и т.д. Силу тяги можно в этом случае вычислить зная время разгона $t$ до нужной скорости $v$ и массу автомобиля $m$:
Задай вопрос специалистам и получи
ответ уже через 15 минут!
Здесь ускорение выражено как частное от деления скорости на время разгона.
Силу тяги можно также выразить через мощность – способность некоторого источника энергии совершать работу. Чем мощность выше – тем за меньшее время этот источник разовьет силу, способную разогнать тело массой $m$ до требуемой скорости $v$. Работа же прямопропорциональна силе, которая ее совершила:
где $s$ – расстояние, на которое сила переместила данное тело.
Поскольку расстояние можно выразить через скорость и время,
а мощность есть работа, выполняемая в единицу времени
можно составить уравнения:
Вычислить силу тяги автомобиля, движущегося с ускорением $3 м/с^2$, если его масса составляет 1,5 тонны, а сила трения – 10% от силы тяжести.
Формулы для определения силы тяги
Согласно второму закону Ньютона, сумма сил, воздействующих на движущееся тело, равна массе (m) , умноженной на ускорение (a) . Универсальной формулы, подходящей для любого сочетания сил, не существует. Чаще всего силу тяги находят с помощью общей формулы ( F_т-;F_ =m; imes;a) , где (F_т) — сила тяги, (F_ ) — силы сопротивления.
При решении конкретной задачи силы, воздействующие на тело, схематически изображают в виде векторов. На схеме:
- сила тяжести mg;
- сила реакции опоры (N) ;
- сила трения ( F_ ) ;
- сила тяги (F) .
При нахождении тела на горизонтальной поверхности сила тяжести и сила реакции опоры уравновесят друг друга. Но если транспортное средство движется в гору или под гору, придется учесть влияние уклона. Тогда формула может выглядеть так: (F_т-;F_с-;mg; imes;sinalpha=m; imes;a.)
Работа A, которую должна совершить сила тяги, сдвигая тело, связана с ней соотношением (A;=;F; imes;s) . (s) здесь — расстояние, на которое тело переместилось.
Какое условие должно соблюдаться
Сила тяги всегда должна быть больше противодействующих ей сил.
Формула через мощность
Полезную механическую мощность (N) можно вычислить по формуле (N=F_т; imes;v) , где (v) — скорость. Для определения силы тяги нужно разделить мощность на скорость: (F_т;=;frac N v.)
Как определить силу тяги двигателя. Примеры решения задач
Автомобиль может разгоняться до 216 км/ч. Максимальная мощность двигателя равна 96 кВт. Определите максимальную силу тяги двигателя.
Переведем киловатты в ватты, а километры в час — в метры в секунду:
(F_т;=;frac N v = frac = 1600 Н)
Троллейбус весом 12 тонн за 5 секунд проезжает по горизонтальной дороге 10 метров. Сила трения равна 2,4 кН. Определите силу тяги, которую развивает двигатель.
Переведем тонны в килограммы, а килоньютоны в ньютоны:
(F_т-;F_ =m; imes;a) , следовательно, (F_т=m imes a;+;F_ )
Чтобы определить ускорение а, воспользуемся формулой (s;=;frac2)
Подставив численные значения величин, получаем:
Транспорт, весящий 4 тонны, едет в гору. Уклон — 1 метр на каждые 25 метров пути. (mu) — 0,1 от силы тяжести, (а = 0) . Определите силу тяги.
Сделаем проекции на координатные оси:
Подставим значение (F_ ) в уравнение (OX) и определим (F_т) :
Найдем синус и косинус (alpha) , подставим их в общую формулу:
Комментарии
Выражаем из уравнения силу тяги, подставляя вместо Fтр = μmg, а ускорение находим из уравнения скорости.
- Войдите или зарегистрируйтесь, чтобы отправлять комментарии
Из уравнения изменения скорости: a = 0.5 м/с 2 .
Значит, сила трения при движении тела по горизонтальной поверхности Fтр = μmg, но можно и вывести. По определению, Fтр = μN.
Fтр = μmg (что и требовалось доказать).
Fт = μmg + ma, подставим числа: Fт = 0.02 × 10 000 × 10 + 10 000 × 0.5 = 7 000 Н.
- Войдите или зарегистрируйтесь, чтобы отправлять комментарии
- Войдите или зарегистрируйтесь, чтобы отправлять комментарии
Это зависимость скорости от времени, значит, построим график при t = 0 c и v = 0 м/c, при t = 1 c и v = 0.5 м/c, при t = 2 c и v = 1 м/c и т. д.
Значит, явно видно, что с увеличением времени скорость постоянно изменяется на определённое число. Это и есть ускорение. Поэтому ускорение тела 0.5 м/c 2 .
- Войдите или зарегистрируйтесь, чтобы отправлять комментарии
v = vo + at (в векторном виде),
вид уравнения указывает нам на линейную зависимость, коэффициент при времени t и есть ускорение.
С другой стороны:
Продифференцировав по времени уравнение скорости, получим ускорение:
- Войдите или зарегистрируйтесь, чтобы отправлять комментарии
Извините, но я только перешёл в 10 класс, и я не знаю производную.
Разберёмся в вопросе, что такое сила тяги. Как следует из самого названия – это сила, которую необходимо прикладывать к телу, чтобы оно находилось в состоянии постоянного движения.
Если её убрать, то тело, будь то автомобиль, электровоз, космическая ракета или санки, со временем остановится. Это произойдёт потому, что на тело всегда действуют силы, которые заставляют его стремиться к состоянию покоя:
Примеры решения задач
Задание. На автомобиль имеющий массу 1 т при его движении по горизонтальной поверхности, действует сила трения, которая равна $mu$=0,1 от силы тяжести. Какой будет сила тяги, если автомобиль движется с ускорением 2 м/с?
Решение. Сделаем рисунок.
В качестве основы для решения задачи используем второй закон Ньютона:
Спроектируем уравнение (1.1) на оси X и Y:
Подставим правую часть выражения (1.4) вместо силы трения в (1.2), получим:
Переведем массу в систему СИ m=1т=10 3 кг, проведем вычисления:
Ответ. FT=2,98 кН
Формула силы тяги не по зубам? Тебе ответит эксперт через 10 минут!
Задание. На гладкой горизонтальной поверхности лежит доска массой M. На доске находится тело массы m. Коэффициент трения тела о доску равен $mu$ . К доске приложена сила горизонтальная сила тяги, которая зависит от времени как: F=At (где A=const). В какой момент времени доска начнет выскальзывать из-под тела?
Решение. Сделаем рисунок.
Для решения задачи нам потребуются проекции сил на осиX и Y, которые отличны от нуля. Для тела массы m:
$$M a_ =F-F_
ightarrow M a_ =A t-F_
ightarrow a_ =frac> (2.2)$$
Обозначим момент времени, в который доска начнет выскальзывать из-под тела t , тогда
ли со статьей или есть что добавить?